Foundations of Computer Science Robert Kovacsics Supervision 1

1. Floating Point
1. Watch the following video: Fast Inverse Square Root — A Quake III Algorithm https://youtu.
be/p8u_k2LIZyo.

Where does the constant 0x5f3759df come from?

(Just a quick answer, otherwise watching the video isn’t much of a question. But watching the
video is the main bit of work, not writing down this. You can watch the video on 2x speed if you
can still follow it. And you don’t have to know the fast inverse square root for the exam.)

[medium, because of video length]

2. JavaScript uses IEEE 754 double-precision floating point (1 bit of sign, 11 bits of exponent, and 52
bits of mantissa [remember the implicit 1. so it is 53 bits of significand]). What is the range of
integers which can be represented contiguously (without gaps)?

[small]
3. Solve exercise 1.6 of the lecture notes (copied for convenience).

Another example of the inaccuracy of floating-point arithmetic takes the golden ration ¢ ~ 1.618
as its starting point:

1++/5 1

Yo 5 and Vp41 = w—1

In theory it is easy to prove that v,, = ... =7, = v, for all n > 0. Code this computation in
OCaml and report the value of ;. Hint: in OCaml, sqrt 5 is expressed as sqrt 5.0.

[small]

2. Complexity

1. Solve one of the following equations:

(1) =1 T(1) =1
T(n)=27(5) +1 o T(n)=T(3) +n
[medium]
2. The Fibonacci function can be written as
1 let rec fib(n) = “40Caml
2 if n<2 then 1
3 else fib(n-2) + fib(n-1) ;;
What is its time and space complexity?
[small]

3. The Fibonacci function can be more efficiently written if instead of returning a single value of
fib(n), we return two values, (fib(n), fib(n-1)). Write this function.

What is its time and space complexity?

[small]

https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo

Foundations of Computer Science Robert Kovacsics Supervision 1

3. Lists and recursion
1. What is the difference between List.fold_left and List.fold_right? Write your own version
of them (say foldl and foldr) using pattern-matching on the list.

[small]

2. List folding is the principal function for operating on lists, all other functionality can be
implemented on top of fold left. Using fold left, implement rev 1 for reversing the list 1,
and map f 1 for applying f to each element of the list 1.

[small]

3. Write a function which takes a list of strings and formats it, for example fmtlist [1;2;3]
evaluates to "[1; 2; 3]". You might want to write this function in terms of foldl to help with
the next part. Note, string concatenation is done using the ~ operator in OCaml.

[small]

4. Fold-left is such a fundamental operation of lists, that lists can be encoded as a function that
represents fold-left. (Can be encoded, but not encoded this way usually.) For example,

1 Tlet 1 (* encoding [] *) = fun f v -> v HH Z40Caml
2 let 11 (* encoding ["1"] *) = fun f v ->f v "1" HH

3 1let 1.1 2 (* encoding ["1"; "2"] *) = fun f v -> f (f v "1") "2" ;;

4

5 Tlet foldit fvli=1Tfv;;

6

7 (* Copy/re-evaluate your "fmtlist ™ to use the new fold *)

8 fmtlist 1 ;3 (* Evaluates to "[]1" *)

9 fmtlist 1 1 ;3 (* Evaluates to "[1]" *)

10 fmtlist 1.1 2 ;; (* Evaluates to "[1; 2]" *)
Can you come up with a function that conses an element to a list, in this representation? So that
1 fmtlist (cons "0" 1.1 2) ;; (* Evaluates to "[0; 1; 2]" *) “40Caml

[big, if you can’t figure it out it’s okay]

	Floating Point
	Complexity
	Lists and recursion

