
Foundations of Computer Science Robert Kovacsics Supervision 1

1. Floating Point
1. Watch the following video: Fast Inverse Square Root – A Quake III Algorithm https://youtu.

be/p8u_k2LIZyo.

Where does the constant 0x5f3759df come from?

(Just a quick answer, otherwise watching the video isn’t much of a question. But watching the
video is the main bit of work, not writing down this. You can watch the video on 2× speed if you
can still follow it. And you don’t have to know the fast inverse square root for the exam.)

[medium, because of video length]

2. JavaScript uses IEEE 754 double-precision floating point (1 bit of sign, 11 bits of exponent, and 52
bits of mantissa [remember the implicit 1. so it is 53 bits of significand]). What is the range of
integers which can be represented contiguously (without gaps)?

[small]

3. Solve exercise 1.6 of the lecture notes (copied for convenience).

Another example of the inaccuracy of floating-point arithmetic takes the golden ration 𝜑 ≈ 1.618
as its starting point:

𝛾0 = 1 +
√
5

2
and 𝛾𝑛+1 = 1

𝛾𝑛 − 1

In theory it is easy to prove that 𝛾𝑛 = … = 𝛾1 = 𝛾0 for all 𝑛 > 0. Code this computation in
OCaml and report the value of 𝛾50. Hint: in OCaml, sqrt 5 is expressed as sqrt 5.0.

[small]

2. Complexity
1. Solve one of the following equations:

𝑇 (1) = 1

𝑇 (𝑛) = 2𝑇(𝑛
2
) + 1

or
𝑇 (1) = 1

𝑇 (𝑛) = 𝑇(𝑛
2
) + 𝑛

[medium]

2. The Fibonacci function can be written as

1 let rec fib(n) =  OCaml
2 if n<2 then 1
3 else fib(n-2) + fib(n-1) ;;

What is its time and space complexity?

[small]

3. The Fibonacci function can be more efficiently written if instead of returning a single value of
fib(n), we return two values, (fib(n), fib(n-1)). Write this function.

What is its time and space complexity?

[small]

1 / 2

https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo

Foundations of Computer Science Robert Kovacsics Supervision 1

3. Lists and recursion
1. What is the difference between List.fold_left and List.fold_right? Write your own version

of them (say foldl and foldr) using pattern-matching on the list.

[small]

2. List folding is the principal function for operating on lists, all other functionality can be
implemented on top of fold_left. Using fold_left, implement rev l for reversing the list l,
and map f l for applying f to each element of the list l.

[small]

3. Write a function which takes a list of strings and formats it, for example fmtlist [1;2;3]
evaluates to "[1; 2; 3]". You might want to write this function in terms of foldl to help with
the next part. Note, string concatenation is done using the ^ operator in OCaml.

[small]

4. Fold-left is such a fundamental operation of lists, that lists can be encoded as a function that
represents fold-left. (Can be encoded, but not encoded this way usually.) For example,

1 let l (* encoding [] *) = fun f v -> v ;;  OCaml
2 let l_1 (* encoding ["1"] *) = fun f v -> f v "1" ;;
3 let l_1_2 (* encoding ["1"; "2"] *) = fun f v -> f (f v "1") "2" ;;
4
5 let foldl f v l = l f v ;;
6
7 (* Copy/re-evaluate your `fmtlist` to use the new fold *)
8 fmtlist l ;; (* Evaluates to "[]" *)
9 fmtlist l_1 ;; (* Evaluates to "[1]" *)
10 fmtlist l_1_2 ;; (* Evaluates to "[1; 2]" *)

Can you come up with a function that conses an element to a list, in this representation? So that

1 fmtlist (cons "0" l_1_2) ;; (* Evaluates to "[0; 1; 2]" *)  OCaml

[big, if you can’t figure it out it’s okay]

2 / 2

	Floating Point
	Complexity
	Lists and recursion

