
Foundations of Computer Science Robert Kovacsics Supervision 1

1. Floating Point
1. Watch the following video: Fast Inverse Square Root – A Quake III Algorithm https://youtu.

be/p8u_k2LIZyo.

Where does the constant 0x5f3759df come from?

(Just a quick answer, otherwise watching the video isn’t much of a question. But watching the
video is the main bit of work, not writing down this. You can watch the video on 2× speed if you
can still follow it. And you don’t have to know the fast inverse square root for the exam.)

[medium, because of video length]

First note the positive floating point value 𝑥 = (1 + 𝑚
223) × 2𝑒−127 has an IEEE 754 bit

representation of 𝑚 | (𝑒 ≪ 23) = 𝑚 + 𝑒 × 223.

Then we also have the approximation that log2(1 + 𝑥) ≈ 𝑥 + 𝜇 for small values of 𝑥, for
which our mantissa 𝑚 is always between zero and one (note, implicit plus one because of the
implicit leading one).

So for some floating point value 𝑥 we have

log2(𝑥) = log2((1 + 𝑚
223) × 2𝑒−127)

= log2(1 + 𝑚
223) + log2(2𝑒−127)

= log2(1 + 𝑚
223) + 𝑒 − 127

≈ 𝑚
223 + 𝑒 − 127 + 𝜇 as 𝑚

223 is small

= 𝑚 + 𝑒 × 223

223 + 𝜇 − 127

= 1
223 IEEE 754 bits of 𝑥 + 𝜇 − 127

Now we want some 𝑦 = 1√
𝑥 , so

log2(𝑦) = log2(
1√
𝑥

)

= −1
2

log2(𝑥)

⇒ 1
223 bits of 𝑦 + 𝜇 − 127 = −1

2
(1

223 bits of 𝑥 + 𝜇 − 127)

⇒ 1
223 bits of 𝑦 = 127 − 𝜇 − 1

2
(1

223 bits of 𝑥 + 𝜇 − 127)

⇒ bits of 𝑦 = 223(127 − 𝜇) − 1
2
(bits of 𝑥 + 223(𝜇 − 127))

= 223(127 − 𝜇) + 1
2
(223(127 − 𝜇) − bits of 𝑥)

= 223 × 3
2
(127 − 𝜇) − 1

2
bits of 𝑥

1 / 9

https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo
https://youtu.be/p8u_k2LIZyo

Foundations of Computer Science Robert Kovacsics Supervision 1

Solving 0x5f3759df = 223 3
2(127 − 𝜇) for 𝜇 gives us 𝜇 = 0.04504656791687012 which isn’t

quite the lowest average error value of 0.043 but is close enough. Apparently this was found
via trial and error.

2. JavaScript uses IEEE 754 double-precision floating point (1 bit of sign, 11 bits of exponent, and 52
bits of mantissa [remember the implicit 1. so it is 53 bits of significand]). What is the range of
integers which can be represented contiguously (without gaps)?

[small]

One gotcha is the implicit one, but keeping that in mind, let’s consider the case when all the
bits in the mantissa are set, and the exponent makes it an integer. We have

1.112 × 252

to which we can add 1 to get

1.002 × 253

but then we cannot add 1 again because that would be represented as

1.002 × 253

+1.002 × 20

= 1.0012 × 253

rounds to 1.00 × 253

but the result cannot be represented using double-precision floating point, so it gets rounded
down.

Similar argument applies to negatives, only the sign bit is different. So we get the range
[−253, 253].

To double-check that we haven’t made an off-by-one error, I usually consider a simplified
example, in this case consider a floating-point representation with one bit of mantissa

(−1)sign × 1.𝑚0 × 2exp

Here the smallest integer with all mantissa set to 1 is 1.12 ∗ 2 = 112 = 310, or 22 − 1.
Similarly, if we had two bits of mantissa, we would have 710 or 23 − 1. So for 52 bits of
mantissa, we have 253 − 1, so the range is indeed [−253, 253].

To inspect a floating point number’s bytes in OCaml (OCaml floats are double-precision IEEE
754 binary64), you can do (this is beyond the scope of the course):

1 type parts = { sign: int64; mantissa: int64; exponent: int64 };;  OCaml
2 let parts_of_float d =
3 let open Int64
4 in let bits = bits_of_float d
5 in {
6 sign = logand (shift_right_logical bits 63) 1L;
7 exponent = logand (shift_right_logical bits 52) 0x7FFL;
8 mantissa = logand bits 0xF_FFFF_FFFF_FFFFL

2 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

9 };;
10

11
(* Format an integer as a single digit, assumes base is bigger than the
integer *)

12 let sym_of_int n =
13 let i = Int64.to_int n
14 in if i < 10
15 then Char.chr (i + Char.code '0')
16 else Char.chr (i - 10 + Char.code 'a');;
17
18 (* Formats an int64 to the given base and width, see `mkSeparator` for an
19 example of separator *)
20 let fmt_int n base width separator =
21 let open Int64
22 in let base = of_int base
23 in let rec loop n index =
24 if index < width
25 then loop (div n base)
26 (index + 1) ^
27 Char.escaped (sym_of_int (rem n base)) ^
28 separator index
29 else ""
30 in loop n 0;;
31
32 (* Separates digits using given separator into `groupSize` groups *)
33 let mkSeparator separator groupSize n =
34 if n != 0 && n mod groupSize == 0 then separator else "";;
35
36 (* Example:
37 fmt_int 0x1234L 16 8 (mkSeparator "_" 4);;
38 "0000_1234" *)
39
40 (* Euclid's GCD function, for simplifying fractions *)
41 let rec gcd a b =
42 if b = 0L
43 then a
44 else gcd b (Int64.rem a b);;
45
46 (* Print a simplified fraction *)
47 let fmt_frac nom denom =
48 if nom = 0L
49 then "0"
50 else let cd = gcd nom denom
51 in (Int64.to_string (Int64.div nom cd)) ^ "/" ^
52 (Int64.to_string (Int64.div denom cd));;

3 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

53

54
(* Format a raw double as decimal sign, fraction, exponent; hexadecimal
bits and

55 binary bits *)
56 let fmt_parts ({sign = s; mantissa = m; exponent = e}) =
57 let open Int64
58 in let decfmt = (if s = 0L then " " else "-") ^
59 "(1 + " ^ (fmt_frac m (shift_left 1L 52)) ^
60 ") * 2^" ^ (to_string (sub e 1023L))
61 in let hexfmt = "S " ^ fmt_int s 16 1 (fun _ -> "") ^
62 " E " ^ fmt_int e 16 3 (mkSeparator " " 4) ^
63 " M " ^ fmt_int m 16 9 (mkSeparator " " 4)
64 in let binfmt = "S " ^ fmt_int s 2 1 (fun _ -> "") ^
65 " E " ^ fmt_int e 2 8 (mkSeparator " " 8) ^
66 " M " ^ fmt_int m 2 52 (mkSeparator " " 8)
67 in decfmt ^ "\n" ^ hexfmt ^ "\n" ^ binfmt;;
68 let fmt_double d = fmt_parts @@ parts_of_float d;;
69
70 print_string @@ fmt_double 1.0 ^ "\n";;
71 (* (1 + 0) * 2^0
72 S 0 E 3ff M 0 0000 0000

73
 S 0 E 11111111 M 0000 00000000 00000000 00000000 00000000
00000000 00000000 *)

74
75 print_string @@ fmt_double 1.5 ^ "\n";;
76 (* (1 + 1/2) * 2^0
77 S 0 E 3ff M 0 0000 0000

78
 S 0 E 11111111 M 1000 00000000 00000000 00000000 00000000
00000000 00000000 *)

79
80 print_string @@ fmt_double 1.25 ^ "\n";;
81 (* (1 + 1/4) * 2^0
82 S 0 E 3ff M 0 0000 0000

83
 S 0 E 11111111 M 0100 00000000 00000000 00000000 00000000
00000000 00000000 *)

84
85 print_string @@ fmt_double (-1.25) ^ "\n";;
86 (* -(1 + 1/4) * 2^0
87 S 1 E 3ff M 0 0000 0000

88
 S 1 E 11111111 M 0100 00000000 00000000 00000000 00000000
00000000 00000000 *)

89
90 print_string @@ fmt_double 0.5 ^ "\n";;
91 (* (1 + 0) * 2^-1
92 S 0 E 3fe M 0 0000 0000

4 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

93
 S 0 E 11111110 M 0000 00000000 00000000 00000000 00000000
00000000 00000000 *)

94
95 print_string @@ fmt_double 0.25 ^ "\n";;
96 (* (1 + 0) * 2^-2
97 S 0 E 3fd M 0 0000 0000

98
 S 0 E 11111101 M 0000 00000000 00000000 00000000 00000000
00000000 00000000 *)

99
100 print_string @@ fmt_double @@ float_of_int @@ Int.shift_left 1 53;;
101 (* (1 + 0) * 2^53
102 S 0 E 434 M 0 0000 0000

103
 S 0 E 00110100 M 0000 00000000 00000000 00000000 00000000
00000000 00000000 *)

104
105 print_string @@ fmt_double @@ float_of_int @@ (Int.shift_left 1 53) - 1;;
106 (* (1 + 4503599627370495/4503599627370496) * 2^52
107 S 0 E 433 M f ffff ffff

108
 S 0 E 00110011 M 1111 11111111 11111111 11111111 11111111
11111111 11111111 *)

3. Solve exercise 1.6 of the lecture notes (copied for convenience).

Another example of the inaccuracy of floating-point arithmetic takes the golden ration 𝜑 ≈ 1.618
as its starting point:

𝛾0 = 1 +
√

5
2

and 𝛾𝑛+1 = 1
𝛾𝑛 − 1

In theory it is easy to prove that 𝛾𝑛 = … = 𝛾1 = 𝛾0 for all 𝑛 > 0. Code this computation in
OCaml and report the value of 𝛾50. Hint: in OCaml, sqrt 5 is expressed as sqrt 5.0.

[small]

The only gotcha is using the floating point functions +. , -., /. and floating point literals.

1 let rec gamma = function  OCaml
2 | 0 -> (1. +. sqrt 5.) /. 2.
3 | n -> 1. /. (gamma (n - 1) -. 1.) ;;
4
5 gamma 50 ;; (* Evaluates to -0.618121843485747391 *)

We can verify that the positive root of 𝛾2 − 𝛾 − 1 = 0 is unstable, while the negative root is
stable, so it initially oscillates until it escapes the positive root, then it settles on the negative
root.

1 let (_, _, l) =  OCaml
2 List.fold_left
3 (function (n, prev, ls) -> fun l ->

5 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

4 if Float.abs @@ prev -. l > 0.1
5 then (n+1, l, (n, l)::ls)
6 else (n+1, prev, ls))
7 (0, 0.0, [])
8 @@ List.init 1000 gamma
9 in List.rev l;;
10
11 (* [(0, 1.6180339887498949); (37, 1.42633592659499531);
12 (38, 2.34556821890819922); (39, 0.743180454136621149);
13 (40, -3.89378462857329932); (41, -0.204340827375464856);
14 (42, -0.830329734963174526); (43, -0.546349644491854081);
15 (44, -0.646684275811768239)] *)

2. Complexity
1. Solve one of the following equations:

𝑇 (1) = 1

𝑇 (𝑛) = 2𝑇(𝑛
2
) + 1

or
𝑇 (1) = 1

𝑇 (𝑛) = 𝑇(𝑛
2
) + 𝑛

[medium]

The trick is repeated expansion, they are pretty much the same

𝑇 (𝑛) = 2𝑇(𝑛
2
) + 1 𝑇 (𝑛) = 𝑇(𝑛

2
) + 𝑛

let 2𝑚 = 𝑛
𝑇(2𝑚) = 2𝑇 (2𝑚−1) + 1 𝑇 (2𝑚) = 𝑇(2𝑚−1) + 2𝑚

= 2(𝑇 (2𝑚−2) + 1) + 1 = 𝑇(2𝑚−2) + 2𝑚−1 + 2𝑚

= 2(2(⋯2(20) + 1⋯) + 1) + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 expansions

= 1 + 2 + ⋯ + 2𝑚−1 + 2𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚 expansions

= 2𝑚 + 2𝑚−1 + ⋯ + 21 + 20

= 2𝑚+1 − 1 = 2𝑚+1 − 1
𝑇(𝑛) = 2𝑛 − 1 𝑇 (𝑛) = 2𝑛 − 1

To see that 2𝑚 + ⋯ + 2 + 1 = 2𝑚+1 − 1, I visualise the sequence 2𝑚 + ⋯ + 2 + 1 as the 𝑚
bit binary number with all ones 1⋯11. If I add and subtract one, it is still the same number,
but 1⋯11 + 1 − 1 = 10⋯00 − 1. Alternatively you can just use the geometric sum formula:

𝑆𝑚 = 𝑎𝑏0 + 𝑎𝑏1 + ⋯ + 𝑎𝑏𝑚 =
𝑎(1 − 𝑏𝑚+1)

1 − 𝑏

2. The Fibonacci function can be written as

1 let rec fib(n) =  OCaml
2 if n<2 then 1
3 else fib(n-2) + fib(n-1) ;;

6 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

What is its time and space complexity?

[small]

We have 𝑇 (0) = 1, 𝑇 (1) = 1 and 𝑇 (𝑛) = 𝑇(𝑛 − 2) + 𝑇(𝑛 − 1) otherwise. This is exactly the
Fibonacci series, so 𝑇 (𝑛) = fib(𝑛) = 𝑂(𝜑𝑛) since 𝜑𝑛 = fib(𝑛) × 𝜑 + fib(𝑛 − 1).

For space complexity, it is linear.

3. The Fibonacci function can be more efficiently written if instead of returning a single value of
fib(n), we return two values, (fib(n), fib(n-1)). Write this function.

What is its time and space complexity?

[small]

This is actually simpler, as it is just linear time, linear space.

1 let rec fib' n =  OCaml
2 if n<2 then (1, 1)
3 else let (n1, n2) = fib'(n-1)
4 in (n1+n2, n1) ;;

To get the intended output, we need to wrap it, though this isn’t the interesting part of the
question.

1 let fib n = let (fn, _) = fib' n in n;;  OCaml

You can check that this isn’t tail-recursive, by inserting a tail-call annotation (OCaml always
does tail-call optimisation if possible, but the annotation will print a warning if it is not
possible).

1 let rec fib' n =  OCaml
2 if n<2 then (1, 1)
3 else let (n1, n2) = (fib'[@tailcall])(n-1)
4 in (n1+n2, n1) ;;

This gives us the warning:

1 Warning 51 [wrong-tailcall-expectation]: expected tailcall

It is possible to make a tail-recursive Fibonacci function in OCaml however, it is very similar
to just using a for-loop in an imperative language:

1 let rec fib''loop(n1, n2, index, limit) =  OCaml
2 if index < limit
3 then (fib''loop[@tailcall]) (n1+n2, n1, index+1, limit)
4 else n1;;
5 let rec fib'' n = fib''loop(1, 1, 1, n);;

Which has no such warning.

7 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

3. Lists and recursion
1. What is the difference between List.fold_left and List.fold_right? Write your own version

of them (say foldl and foldr) using pattern-matching on the list.

[small]

The difference is the associativity, and the space-complexity.

foldl op acc [𝑥0, …, 𝑥𝑛] = ((acc op 𝑥0) op ⋯) op 𝑥𝑛 infix
= op(op(… op(acc, 𝑥0)…), 𝑥𝑛) prefix

foldr op[𝑥0, …, 𝑥𝑛] acc = 𝑥0 op(⋯ op(𝑥𝑛 op acc)) infix
= op(𝑥0, op(… op(𝑥𝑛, acc)…)) prefix

1
(* val foldl : ('acc -> 'elem -> 'acc) -> 'acc -> 'elem list ->
'acc ;; *)

 OCaml

2 let rec foldl f acc list = match list with
3 | [] -> acc
4 | l::ls -> foldl f (f acc l) ls ;;
5
6 (* val foldr : ('elem -> 'acc -> 'acc) -> 'elem list -> 'acc -> 'acc ;; *)
7 let rec foldr f list acc = match list with
8 | [] -> acc
9 | l::ls -> f l (foldr f ls acc) ;;

As it can be seen, fold-left is tail-recursive (so constant space), but fold-right is not (so linear
space). Both are linear time in the length of the list.

2. List folding is the principal function for operating on lists, all other functionality can be
implemented on top of fold_left. Using fold_left, implement rev l for reversing the list l,
and map f l for applying f to each element of the list l.

[small]

1 let rev l = foldl (fun ls l -> l::ls) [] l ;;  OCaml
2
3 let map f l = rev (foldl (fun ls l -> (f l)::ls) [] l) ;;
4
5 (* Or *)
6 let map f l = foldr (fun l ls -> (f l)::ls) l [] ;;

3. Write a function which takes a list of strings and formats it, for example fmtlist [1;2;3]
evaluates to "[1; 2; 3]". You might want to write this function in terms of foldl to help with
the next part. Note, string concatenation is done using the ^ operator in OCaml.

[small]

1 let fmtlist l =  OCaml

8 / 9

Foundations of Computer Science Robert Kovacsics Supervision 1

2
 let (str, _) = foldl (fun (str, sep) s -> (str ^ sep ^ s, "; ")) ("", "")
l

3 in "[" ^ str ^ "]"
4 ;;

4. Fold-left is such a fundamental operation of lists, that lists can be encoded as a function that
represents fold-left. (Can be encoded, but not encoded this way usually.) For example,

1 let l (* encoding [] *) = fun f v -> v ;;  OCaml
2 let l_1 (* encoding ["1"] *) = fun f v -> f v "1" ;;
3 let l_1_2 (* encoding ["1"; "2"] *) = fun f v -> f (f v "1") "2" ;;
4
5 let foldl f v l = l f v ;;
6
7 (* Copy/re-evaluate your `fmtlist` to use the new fold *)
8 fmtlist l ;; (* Evaluates to "[]" *)
9 fmtlist l_1 ;; (* Evaluates to "[1]" *)
10 fmtlist l_1_2 ;; (* Evaluates to "[1; 2]" *)

Can you come up with a function that conses an element to a list, in this representation? So that

1 fmtlist (cons "0" l_1_2) ;; (* Evaluates to "[0; 1; 2]" *)  OCaml

[big, if you can’t figure it out it’s okay]

What we want to do is for a list like ocaml fun f v -> f (f v "1") "2" put the expression
ocaml (f' v' "0") in place of v, so we want to apply that to v. We also need to replace f
with f', so what we do is:

1 let cons l ls = fun f v -> ls f (f v l) ;;  OCaml

Almost correct is appending to the end:

1 let cons' l ls = fun f v -> f (ls f v) l ;;  OCaml
2 fmtlist (cons' "0" l_1_2) ;; (* Evaluates to "[1; 2; 0]" *)

9 / 9

	Floating Point
	Complexity
	Lists and recursion

