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1. Impure Programming
1. In pure functional OCaml, the only way to have a function with an unconstrained return type is

to loop forever, i.e.

# let rec f x = f x;;

But non-pure OCaml adds another way to do this, what is it?

[small]

The most immediately obvious one is raising an exception, but closing the program also
works. And there are shorthands for some exceptions

# val raise : exn -> 'a = <fun>
# val exit : int -> 'a = <fun>
# val failwith : string -> 'a = <fun>
# val invalid_arg : string -> 'a = <fun>

There is also the type-system breaking function

# Obj.magic : 'a -> 'b

This re-interprets the bits of the argument of type 'a as type 'b. It doesn’t convert it at all, it
just pretends the underlying bits of 'a are actually 'b, so using this can completely break type
safety and cause crashes. Don’t use unless you really know what you are doing. And because
of the garbage collector, you cannot rely on addresses staying constant, so you shouldn’t use
it for address comparisons. See the cycle detection below for more details.

2. Doubly-linked lists are lists which have pointers to the previous and next elements, give a type
for doubly-linked lists, and the insertion, fold-left and fold-right functions on them. Make both
fold-left and fold-right tail-recursive.

Note, you will need to look at == operator in OCaml.

[medium]

The code becomes a bit simpler if we first define getters/setters, as we won’t have to do so
much pattern matching.

1 type 'a dll = Empty | Node of 'a * 'a dll ref * 'a dll ref  OCaml
2
3 let get_next = function (Node(_, next, _)) -> !next
4   | _ -> failwith "get_next";;
5 let get_prev = function (Node(_, _, prev)) -> !prev
6   | _ -> failwith "get_prev";;
7 let set_next dll n = match dll with
8   | Node(_, next, _) -> next := n
9   | _ -> failwith "set_next";;
10 let set_prev dll n = match dll with
11   | Node(_, _, prev) -> prev := n
12   | _ -> failwith "set_prev";;
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Adding an element to a list involves breaking the loop between the first and the last element –
note this loop must exist otherwise we cannot do tail-recursive fold-right. The highlights
indicate the tricky bit of this function: we need to create a new ref cell inside the new node nn.
Otherwise we would have get_prev n and get_prev nn aliased, and when we do set_prev n
nn we will change the previous pointer on both n but also nn as they are the same reference
cell.

7 let dllcons el = function  OCaml
8   | Empty ->
9     let rec n = Node(el, ref n, ref n) in n
10   | Node(_, next, prev) as n ->

11     let nn = Node(el, ref n, ref !prev)

12     in set_next (!prev) nn;  set_prev n nn;  nn;;

13 let rec rotate i = function Empty -> Empty
14   | Node _ as n when i=0 -> n
15   | Node(_, _, prev) when i<0 -> rotate (i+1) !prev
16   | Node(_, next, _) -> rotate (i-1) !next;;
17 let insert el i dll = dllcons el @@ rotate i dll;;

Note, that because here the type of dll is not a reference, only its next/previous pointers are,
it is not possible to insert at the front, and update the original list so that it is in the front
there. Instead, if you have a doubly-linked list l and you run dllcons a l then it will be
inserted at the end from the point of view of l.

The trick for folding is stopping at the correct time. We need to walk at least one element (if
there is one), so in the one element case we cannot just check n==l but first consider the
current element – this is what the match with is for.

14 let dfoldl f acc l =  OCaml
15   let rec inner acc = function
16     | Empty -> acc
17     | Node(el, next, prev) as n ->
18       if n==l
19       then acc
20       else (inner[@tailcall]) (f acc el) !next

21
  in match l with Empty -> acc | Node(el, next, prev) -> inner (f acc
el) !next;;

22 let dfoldr f l acc =
23   let rec inner acc = function
24     | Empty -> acc
25     | Node(el, next, prev) as n ->
26       if n==l
27       then f el acc
28       else (inner[@tailcall]) (f el acc) !prev
29   in match l with Empty -> acc | Node(el, next, prev) -> inner acc !prev;;

To test, let’s try making a doubly-linked list of ten elements and converting to plain lists.
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1 let list_of_dll l = dfoldr (fun el acc -> el::acc) l [];;  OCaml
2
3 let dll10 = List.init 10 (fun x -> x)
4   |> List.rev
5   |> (List.fold_left (fun dll el -> dllcons el dll) Empty);;
6
7 list_of_dll dll10;;

Note, we could have used records instead of tuples in the Node constructor:

1 type 'a dll = Empty | Node of {  OCaml
2   value: 'a;
3   mutable next: 'a dll;
4   mutable prev: 'a dll
5 }

3. Discuss how you can detect cycles, and the time and space complexity of this.

[small/medium]

First, note that for general cycle checking, we cannot just check the head element like we did
in the dllfoldl function, as the current element might not be in the cycle, e.g. the cycle might
be 𝑎 → 𝑏 → 𝑐 → 𝑏 → ⋯.

The simplest way is to just add each node we have seen to a data-structure, ideally it would be
a set structure, but how? We cannot just use the value, as it might be infinite. If we just use
the address of the ref, then we could do comparisons or hashing – until the garbage collector
does a mark and sweep and moves all our objects, and the addresses are no longer valid and
items which are in the set behave as if they are no longer in the set.

1 let r = ref 1  OCaml
2 let addressof ref : int = Obj.magic ref;;
3 addressof r;;
4 addressof r;;
5 Gc.compact();;
6 (* Wait a second *)
7 addressof r;;
8 addressof r;;

So we have to use a list, which has poor performance for member checking. But I should point
out that this limitation is specific to this use case, for normal graph cycle checking, this isn’t a
problem. And OCaml does a trick for its cycle checking; it only hashes a limited part of the
value. This way it probabilistically speeds it up, but then ends up using a list for values that
hash to the same location in the hash table.

(Note, I ended up looking this up, then asking, because I didn’t realise this trick, see https://
discuss.ocaml.org/t/ocaml-cycle-detection-and-garbage-collector/15757/5 for details.)

But the store seen items in a list/set strategy ends up being costly in terms of space and time –
let the path to the first repeated element be 𝑛, then we use 𝑛 items of space and an upper
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bound for time is 𝑛 log(𝑛) if we use a tree based set, or 𝑛2 with lists. If we can use a hash
table, it could be 𝑛.

One classic cycle detection algorithm is known as Floyd’s algorithm, or the tortoise and the
hare. The idea is very simply that we keep two pointers going through the list, the first
advances by one each time, the second advances by two each time.

1 let floyd_cycle list get_next eq =  OCaml
2   let get_next2 el = Option.bind (get_next el) get_next
3   in let rec inner a b = match a, b with
4       | Some a, Some b when eq a b -> true
5       | Some a, Some b             -> inner (get_next a) (get_next2 b)
6       | _                          -> false
7   in inner (Some list) (get_next list);;

Another algorithm that is worth mentioning for cycle detection, is Brent’s algorithm, which in
comparison to Floyd’s algorithm doesn’t evaluate the next function multiple times. Instead it
works by keeping a previous pointer, and periodically moving it to the current pointer. The
period at which this happens doubles every time, so eventually it will be longer than the cycle
length.

1 let brent_cycle list get_next eq =  OCaml
2   let rec inner len max prev curr =
3       match get_next curr with
4         | None -> false
5         | Some next ->
6           eq prev next ||
7             if len=max
8             then inner 0  (2 * max) curr curr
9             else inner (len + 1) max prev next
10   in inner 0  1 list list;;

4. It is possible to emulate cyclic lists in OCaml using pure programming too, explain how and
contrast it with the impure way.

[small/medium]

It is possible to use lazy lists to make cycles, for example

1 type 'a seq = Nil | Cons of 'a * (unit -> 'a seq);;  OCaml
2 let seqnext = function Nil -> None | Cons(_, next) -> Some(next());;
3
4 let seq_of_list l =
5   List.fold_right (fun v acc -> Cons(v, fun () -> acc)) l Nil;;
6
7 (* len must be at least 0 *)
8 let mkCycle len =
9   let rec inner n =
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10     Cons(n, fun () -> if len<n then inner 0 else inner (n+1))
11   in inner 0;;
12
13 let memeq a b = match a, b with Cons(a, _), Cons(b, _) -> a=b
14   | _ -> false;;
15
16 brent_cycle (mkCycle 10) seqnext memeq;;
17 floyd_cycle (mkCycle 10) seqnext memeq;;

However, this does not emulate cyclic lists perfectly because every time it does Cons(a, f) it
allocates a new cons cell, rather than pointing back to an existing cell. It won’t run out of
memory because the garbage collector will step in, but this has extra overhead.

To show this, I have created a simple function which just traverses the list up to an upper
bound.

1 let rec dlllast dll limit =  OCaml
2   let rec inner i prev = function
3     | Empty -> prev
4     | Node(this, next, _) ->
5       if i=limit
6       then None
7       else inner (i + 1) (Some this) (!next)
8   in inner 0 None dll;;
9 let rec seqlast seq limit =
10   let rec inner i prev = function
11     | Nil -> prev
12     | Cons(this, next) ->
13       if i=limit
14       then None
15       else inner (i + 1) (Some this) (next())
16   in inner 0 None seq;;
17
18 let test =
19   let pairwise op (a1, b1) (a2, b2) = (op a1 a2, op b1 b2)
20
21   in let extract { Gc.major_collections; minor_collections } =
22     (major_collections, minor_collections)
23
24   in let measure f =
25     let startGc = Gc.stat()
26     in let startTime = Sys.time()
27     in let _ = f 1000000
28     in let stopTime = Sys.time()
29     in let stopGc = Gc.stat()
30     in let (maj, min) = pairwise (-) (extract stopGc) (extract startGc)
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31     in (stopTime -. startTime, maj, min)
32
33   in let cyclic () = measure @@ dlllast dll10
34   in let lazyl () = measure @@ seqlast @@ mkCycle 10
35
36   in let repeats = 100
37   in List.init repeats (fun n ->
38     Printf.printf "\r%3d/%3d" n repeats;
39     flush stdout;
40     (cyclic(), lazyl())
41   )
42   |> List.fold_left
43     (pairwise
44       (fun (t, maj, min) (u, ma, mi) -> (t +. u, maj + ma, min + mi)))
45       ((0.0, 0, 0), (0.0, 0, 0));;
46
47 let ((cycTime, cycMaj, cycMin), (lazTime, lazMaj, lazMin)) = test;;
48 Printf.printf

49
  "\r100/100\nMajor GCs %d vs %d\nMinor GCs %d vs %d\nTime %3.4f vs
%3.4f\n"

50   cycMaj lazMaj
51   cycMin lazMin
52   cycTime lazTime;;

Putting it all in a file, compiling and running it:

❯ ocamlc cyclic-vs-lazy-loop.ml -o cyclic-vs-lazy-loop
❯ ./cyclic_vs_lazy_loop
100/100
Major GCs 300 vs 300
Minor GCs 1300 vs 4700
Time 3.1115 vs 6.4115

5. Why does OCaml not allow one to write exception Poly of 'a?

[small]

Polymorphic exceptions would break the type system, because the type of any exception is
exn, and this doesn’t say what 'a would be in this case.

2. Lazy lists
1. Write a datatype for lazy lists/streams, and a function to create an infinite stream of integers.

[small]

This is pretty simple, note the question doesn’t say it has to support finite sequences so for
simplicity we do not.
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1 type 'a seq = Cons of 'a * (unit -> 'a seq);;  OCaml
2 let rec mkseq n = Cons(n, fun () -> mkseq @@ n + 1);;
3 let rec take n = function Cons(v, next) ->
4   if n <= 0
5   then []
6   else v::take (n - 1) (next());;

2. Write a function to filter the stream.

[small]

1 let rec filter pred = function Cons(v, next) ->  OCaml
2   if pred v
3   then Cons(v, fun () -> filter pred @@ next())
4   else filter pred @@ next();;

3. You can define the prime number sequence as taking an integer, and removing all multiples of
that integer from the rest of the sequence. (Starting at two, of course.) Code the lazy list of
primes.

[medium/big]

This is more complicated, the code is small but it is involved. The core idea, is we get the list
of integers from 2, filter everything divisible by two, get the next element of that list, filter
everything divisible by that element, get the next element, filter everything divisible by that
element, and so on.

So the first thing we need to do, is match on the list to get the current prime, return it, as the
head, and as the tail, filter everything divisible by that element, and give that to the function
again.

1 let primes =  OCaml
2   let rec inner = function
3     Cons(v, next) ->
4       Cons(v, fun () -> inner @@ filter (fun n -> n mod v != 0) @@ next())
5   in inner @@ mkseq 2;;

I should point out that this is the “Unfaithful Sieve of Eratosthenes”, from The Genuine Sieve
of Eratosthenes by Melissa E. O’Neill, which contains information on how to make this code
more efficient.

See https://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf for more details.

3. Big question
This question is driven at making a standalone program, for which I’ll help write part of it. First,
some type definitions for the rest of the question:

1 type var_id = int  OCaml
2 type term =
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3   | Var of var_id
4   | List of term list
5   | Int of int
6   | Bool of bool
7   | Str of string;;
8
9 type subst = (var_id * term) list
10 let rec lookup (term: term) (subst: subst) = match term, subst with
11   | Var v, (w, wval)::wvs ->
12     if v=w then wval else lookup (Var v) wvs
13   | _ -> term
14 let extend (varid: var_id) (value: term) (subst: subst) =
15   (varid, value)::subst
16
17 type state = subst * var_id;;
18 type stream = state list;;
19 type goal = state -> stream;;
20
21 (* Some helper functions to abstract away using lists for the stream *)
22 let fail: goal = fun (s, c) -> [];;
23 let success: goal = fun (s, c) -> [(s, c)];;
24 let map = List.map;;
25 let join = String.concat;;

1. Some of the past exam questions give you some code, that has been obfuscated, and ask you to
explain it, or make modifications to it. Consider the following program, in which the names have
been rewritten by a hungry supervisor:

1 exception Out_of_ingredients  OCaml
2 let rec cook pantry pizza pasta =
3   let deep_dish = lookup pizza pantry
4   in let ravioli = lookup pasta pantry
5   in match deep_dish, ravioli with
6   | Var pepperoni, Var cheese when pepperoni=cheese -> pantry
7   | Var pepperoni, _ -> extend pepperoni ravioli pantry
8   | _, Var cheese -> extend cheese deep_dish pantry
9   | List(flour::base), List(tomato::sauce) ->
10       cook (cook pantry flour tomato) (List base) (List sauce)
11   | x, y when x=y -> pantry
12   | _ -> raise Out_of_ingredients;;

Describe what it does. You might want to rewrite it using better names. Also, a good place to start
is putting type annotations in places.

[small/medium]

Let’s first add types, and rename the confusing names:
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1 exception No_match  OCaml
2 let rec todo (subst: subst) (t1: term) (t2: term) : subst =
3   let t1' : term = lookup t1 subst
4   in let t2' : term = lookup t2 subst
5   in match t1', t2' with
6   | Var x, Var y when x=y -> subst
7   | Var x, _ -> extend x t2' subst
8   | _, Var y -> extend y t1' subst
9   | List(x::xs), List(y::ys) ->
10       todo (todo subst x y) (List xs) (List ys)
11   | x, y when x=y -> subst
12   | _ -> raise No_match;;

Now it’s perhaps clearer that it walks both given terms, ensures if it is a variable then it is not
in the substitutions already, and then adds variables to the substitutions. For lists, it does this
for each element of the list. A better name for this function is unify, but students may use
other reasonable names for it, for example recursive match or similar.

2. Using that code, we have the following function:

1 let eq a b =  OCaml
2   fun (s, c) ->
3     try
4       let s' = cook s a b
5       in success (s', c)
6     with Out_of_ingredients -> fail (s, c);;

Can you rewrite cook (or your better named version), and eq to not use exceptions?

[small]

Here we just need to use options. We cannot just do the following

1 let rec unify subst t1 t2 =  OCaml
2   let t1' : term = lookup t1 subst
3   in let t2' : term = lookup t2 subst
4   in match t1', t2' with
5   | Var x, Var y when x=y -> subst
6   | Var x, _ -> extend x t2' subst
7   | _, Var y -> extend y t1' subst
8   | List(x::xs), List(y::ys) ->
9       unify (unify subst x y) (List xs) (List ys)
10   | x, y when x=y -> subst
11   | _ -> [];;

because for lists, this doesn’t work as expected, because it continues to unify the rest of the
lists. For example
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1 unify [] (List[Int 1; Var 0]) (List[Int 2; Int 3]);;  OCaml
2 (* Returns `[(0, Int 3)]` instead of `[]` as expected. *)
3 cook [] (List[Int 1; Var 0]) (List[Int 2; Int 3]);;

So we need to instead use the optional type, using Some when we would normally return a
value, and None when we would just raise the exception. If we wanted to distinguish multiple
exceptions, we could use the type ('a, 'b) result = Ok of 'a | Error of 'b;; type.

1
let rec unify (subst: subst) (t1: term) (t2: term) : subst option
=

 OCaml

2   let t1' : term = lookup t1 subst
3   in let t2' : term = lookup t2 subst
4   in match t1', t2' with
5   | Var x, Var y when x=y -> Some subst
6   | Var x, _ -> Option.some @@ extend x t2' subst
7   | _, Var y -> Option.some @@ extend y t1' subst
8   | List(x::xs), List(y::ys) ->
9       Option.bind (* bind : 'a option -> ('a -> 'b option) -> 'b option *)
10         (unify subst x y)
11         (fun s -> unify s (List xs) (List ys))
12   | x, y when x=y -> Some subst
13   | _ -> None;;

Then the equality becomes

1 let eq (a: term) (b: term) : goal =  OCaml
2   fun (s, c) ->
3     match unify s a b with
4       | None -> fail (s, c)
5       | Some s' -> success (s', c);;

3. For the last part of the question, we have some more definitions, and the var_id in the state
becomes obvious – it represents the first free variable (hence why we are using integers for
variable identifiers, rather than say strings.
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1 let fresh (f: term -> goal) : goal =  OCaml
2   fun (s, c) -> f (Var c) (s, c + 1);;
3 let mplus (a: stream) (b: stream) : stream = a @ b;;
4 let rec bind (s: stream) (g: goal) : stream =
5   match s with
6   | [] -> []
7   | sub::subs -> mplus (g sub) (bind subs g);;
8
9 let disj (g1: goal) (g2: goal) : goal =
10   fun state -> mplus (g1 state) (g2 state);;
11
12 let conj (g1: goal) (g2: goal) : goal =
13   fun state -> bind (g1 state) g2;;

This logic programming language returns a list of all the possible results at once, discuss how you
could make it not do so, and how you can then change the search strategies.

To help with this question, I have included some examples of use. For a simple example, we have
the code:

1 let test =  OCaml
2   let query =
3     fresh @@ fun p -> fresh @@ fun q ->
4       let l1 = List [p; Int 7]
5       in let l2 = List [Int 9; Int 7]
6       in disj
7           (conj
8             (eq q (Int 5))
9             (eq l1 l2))
10           (eq q (Int 1))
11   in query ([], 0);;

which returns

1 val test : stream = [([(0, Int 9); (1, Int 5)], 2);  OCaml
2                      ([(1, Int 1)], 2)];;

and this means that there are two solutions to the logic expression

(𝑞 = 5 ∧ [𝑝, 7] = [9, 7]) ∨ 𝑞 = 1

either p is 9 and q is 5, or q is 1 and it doesn’t matter what p is.

To give another example, which will help for the search strategy part, consider representing a
kind of binary tree where only the leaves hold values, using list terms, for example:

1 let t1 = (List [List [List [Int 1; Int 2]; List [Int 3; Int 4]];  OCaml
2                 List [List [Int 5; Int 6]; List [Int 7; Int 8]]]);;

The expression to walk all nodes (leaves and branches) of the tree can be written as follows.
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3 (* Walk a nested list *)  OCaml
4 let rec walk term out =
5   disj
6     (fresh @@ fun l -> fresh @@ fun r ->
7       conj
8         (eq term (List[l; r]))
9         (disj (walk l out) (walk r out)))
10     (eq term out);;

For convenience, I will also define some pretty printing functions, you don’t necessarily need to
understand them though they are not complicated, just a bit tedious.

11 (* Walks substitutions recursively until no more variables can be  OCaml
12    resolved -- assumes no recursive substitutions *)
13 let rec make_ground subst term : term = match term with
14   | Var v -> (match (List.assoc_opt v subst) with
15     None -> term | Some t -> make_ground subst t)
16   | List l -> List (List.map (make_ground subst) l)
17   | t -> t;;
18
19 (* Formats a term *)
20 let rec string_of_term = function
21   | Var v -> Printf.sprintf "V%d" v
22   | Int i -> Printf.sprintf "%d" i
23   | Str s -> String.escaped s
24   | Bool b -> if b then "true" else "false"
25   | List l -> "[" ^ String.concat "; " (List.map string_of_term l) ^ "]";;
26
27 let print_all_mappings v streams =
28   streams
29   |> map (fun (subst, _) -> string_of_term @@ make_ground subst v)
30   |> join "\n"
31   |> print_endline;;

Finally we can walk the tree and print the variable binding to the second argument of walk.

1 walk t1 (Var 0) ([], 1)  OCaml
2 |> print_all_mappings (Var 0);;

1
2
[1; 2]
3
4
[3; 4]
[[1; 2]; [3; 4]]
5
6
[5; 6]
7
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8
[7; 8]
[[5; 6]; [7; 8]]
[[[1; 2]; [3; 4]]; [[5; 6]; [7; 8]]]

[medium]

I felt the supervision material was already getting to be quite a lot, so I didn’t make this a
coding question – in any case the interesting bit here is identifying where to do the change,
not so much doing the change.

To make this lazy, we would again just code up a lazy list datatype (by the way there is Seq
but you aren’t expected to use it in your exams, instead demonstrating you can create your
own). Then code up lazy versions of mplus and bind.

1 type 'a seq = Nil | Cons of 'a * (unit -> 'a seq)  OCaml
2 type stream = state seq;;
3
4 let join sep seq =
5   let rec inner isep acc = function
6     Nil -> acc | Cons(v, next) -> inner sep (acc ^ isep ^ v) (next())
7   in inner "" "" seq;;
8 let rec map f = function
9   Nil -> Nil | Cons(v, next) -> Cons(f v, fun () -> map f @@ next())
10
11 let fail = fun (s, c) -> Nil
12 let success = fun (s, c) -> Cons((s, c), fun () -> Nil);;
13
14 let rec (@=) a b = match a, b with
15   | Cons(av, an), b -> Cons(av, fun () -> an() @= b)
16   | Nil, b -> b;;
17
18 let mplus a b = a @= b;;
19 let rec bind s g = match s with
20   | Nil -> Nil
21   | Cons(sub, subs) -> mplus (g sub) (bind (subs()) g);;

For search strategies, we can consider where streams are potentially very large or infinite, and
we might be neglecting other elements of the stream. In the function mplus we have to
exhaust the first stream before we get to the second one, if instead we modify it then we can
get a fairer traversal.

1 let rec alternate a b = match a, b with  OCaml
2   | Nil, b -> b | a, Nil -> a
3   | Cons(av, an), Cons(bv, bn) -> Cons(av, fun () -> alternate b (an()));;
4 let mplus a b = alternate a b;;

We could also improve fairness by making the conjunction and disjunction take lists rather
than just be binary operators. This avoid an expression representing (𝑎 ∧ 𝑏) ∧ 𝑐 taking from 𝑎
and 𝑏 half as often as from 𝑐.
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Note, this is the transpose function, except this doesn’t use append because it uses a queue
instead.

1 (* OCaml Queue module is not functional. *)  OCaml
2 let rec alternate (seqs: 'a seq seq) : 'a seq =
3   let q: 'a seq Queue.t = Queue.create()
4   in let rec inner = function
5     | Nil -> (match Queue.take_opt q with
6       | None -> Nil
7       | Some s -> inner @@ Cons(s, fun () -> Nil))
8     | Cons(Nil, next) -> inner @@ next()
9     | Cons(Cons(a, an), bn) ->
10       Cons(a, fun () -> Queue.add (an()) q; inner @@ bn())
11   in inner seqs;;
12
13 let rec seq_of_list = function
14   | [] -> Nil
15   | x::xs -> Cons(x, fun () -> seq_of_list xs);;
16
17 let rec list_of_seq = function
18   | Nil -> []
19   | Cons(v, next) -> v::(list_of_seq @@ next());;
20
21 let any (g: goal list) : goal =
22   fun state ->
23     alternate @@ map (fun g -> g state) @@ seq_of_list g;;
24
25 let rec bind s g = match s with
26   | Nil -> Nil
27   | Cons(sub, subs) -> mplus (g sub) (bind (subs()) g);;
28
29 let all (g1: goal) (g2: goal) : goal =
30   fun state -> bind (g1 state) g2;;

3.1. Bonus
This uses code from the “Big question” section, optionally along with the lazy list version, to make a
type checker for the simply typed lambda calculus. First, we will need some convenience functions.

1 let any (g: goal list) : goal =  OCaml
2   List.fold_left disj fail g;;
3
4 let all (g: goal list) : goal =
5   List.fold_left conj success g;;

The simply typed lambda-calculus has the typing rules
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Γ, arg : 𝛼 ⊢ body : 𝛽 (fun)
Γ ⊢ fn arg → body : 𝛼 → 𝛽

Γ ⊢ func : 𝛼 → 𝛽 Γ ⊢ arg : 𝛼 (app)
Γ ⊢ func arg : 𝛽

(var. found)
Γ, 𝑥 : 𝛼 ⊢ 𝑥 : 𝛼

Γ ⊢ 𝑥 : 𝛽𝑥 ≠ 𝑦 (var. not found)
Γ, 𝑦 : 𝛼 ⊢ 𝑥 : 𝛽

Which we can easily express as a series of logic rules in our simple logic programming system.

6 let rec typecheck gamma term typ =  OCaml
7   any [
8     (* fun *)
9     (fresh @@ fun var -> fresh @@ fun body ->
10       fresh @@ fun a -> fresh @@ fun b ->
11       all [
12         eq term @@ List[Str "fun"; var; body];
13         eq typ @@ List[a; Str "->"; b];
14         typecheck ((var, a)::gamma) body b]);
15     (* app *)
16     (fresh @@ fun fn -> fresh @@ fun arg ->
17       fresh @@ fun a -> fresh @@ fun b ->
18       all [
19         eq term @@ List[fn; arg];
20         eq typ b;
21         typecheck gamma fn (List[a; Str "->"; b]);
22         typecheck gamma arg a]);
23     match gamma with
24     | [] -> fail
25     | (x, a)::rest ->
26       any [
27         (* var found *)
28         all [eq x term; eq a typ];
29         (* var not found *)
30         typecheck rest term typ]
31   ];;

We will also write a couple of functions to pretty-print the resulting type, to make it easier to read.
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32 (* Creates a module for mapping variables (integers) *)  OCaml
33 module VarMap = Map.Make(struct include Int end);;
34
35 (* Maps a number to a type, e.g. 0 to 'a, 25 to 'z, 26 to 'aa, 27 to 'ab etc *)
36 let format_var n =
37   let char_of_var n = Char.chr (Char.code 'a' + n)
38   in let rec inner n acc =
39     if n < 26
40     then char_of_var n :: acc
41     else inner (n / 26 - 1) @@ char_of_var (n mod 26) :: acc
42   in "'" ^ (String.of_seq @@ List.to_seq @@ inner n []);;
43
44 (* Map each variable to 'a, 'b, etc *)
45 let map_var vars v = match VarMap.find_opt v vars with
46   | None ->
47     let mapping = format_var (VarMap.cardinal vars)
48     in (VarMap.add v mapping vars, mapping)
49   | Some s -> (vars, s);;
50
51 (* Formats a type (which is assumed to be only `List[type; Str"->" type]` or
52    `Var v`) as a readable string *)
53 let rec format_type vars term = match term with
54   | List[List l; Str "->"; r] ->
55     let (vars', l') = format_type vars (List l)
56     in let (vars'', r') = format_type vars' r
57     in (vars'', Printf.sprintf "(%s) -> %s" l' r')
58   | List[l; Str "->"; r] ->
59     let (vars', l') = format_type vars l
60     in let (vars'', r') = format_type vars' r
61     in (vars'', Printf.sprintf "%s -> %s" l' r')
62   | Str s -> (vars, s)
63   | Var v -> map_var vars v
64   | _ -> failwith "format_type";;
65
66 let format_results query results =
67   map (fun ((subst, _): state) ->
68     let (_, ty) = format_type VarMap.empty (make_ground subst query)
69     in ty) results
70   |> join "\n" |> Printf.printf "Results:\n%s\n";;

Now we can try some examples! This fails because it has an unbound variable

let t0 = typecheck [] (Str"x") (Var 0) ([], 1);;
format_results (Var 0) t0;;

Results:

If we bind the variable, it works:
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let t1 = typecheck [(Str"x", (Var 0))] (Str"x") (Var 0) ([], 1);;
format_results (Var 0) t1;;

Results:
'a

For a different expression that has no unbound variables:

let t2 = typecheck [] (List[Str"fun"; Str"x"; Str"x"]) (Var 0) ([], 1);;
format_results (Var 0) t2;;

Results:
'a -> 'a

And for a more complicated expression:

let t3 = typecheck
  []
  (* Encoding the term `fun x -> fun y -> fun z -> x y (z y)` *)
  (List[Str"fun"; Str"x";
    List[Str"fun"; Str"y";
      List[Str"fun"; Str"z";
        List[
          List[Str"x"; Str"y"];
          List[Str"z"; Str"y"]]]]])
  (Var 0)
  ([], 1);;
format_results (Var 0) t3;;

Results:
('a -> 'b -> 'c) -> 'a -> ('a -> 'b) -> 'c
('a -> 'b -> 'c) -> 'a -> ('a -> 'b) -> 'c

Note, because we do not do occurs checks, the following also works (not pretty-printing it because
the pretty-printer would try to expand it forever):

let t4 = typecheck
  []
  (* Encoding the term `fun x -> x x` *)
  (List[Str"fun"; Str"x"; List[Str"x"; Str"x"]])
  (Var 0)
  ([], 1);;

val t4 : stream =
  Cons
  (([(7, List [Var 7; Str "->"; Var 8]); (3, List [Var 7; Str "->"; Var 8]);
      (4, Var 8); (6, Str "x"); (5, Str "x");
      (0, List [Var 3; Str "->"; Var 4]); (2, List [Str "x"; Str "x"]);
      (1, Str "x")],
    9),
  <fun>)

Which does represent the infinite type 'a = 'a -> 'b as expected. To fix this, you would have to
look at adding an “occurs check” into the extend function.

If you want to learn more about this kind of logic programming, you could read more about
“microkanren”, or read the book “Reasoned Schemer” – it is an excellent book, I recommend it. So
are the rest of that series.
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